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l. INTRODUCT ION

Research in the time period covered by this report has been
concentrated primarily on the subject of linear, space-variant restora-
tion of blurred, photon limited images. However, some effort has also
been devoted to extending our previous work on photon limitations in
compensated imaging, particularly an extension of the results presented
in RADC report #RADC-TR-77-165.

In section || we discuss the extensions menticned above. Section
111 briefly describe; some unsuccessful attempts at formulating the space-
variant filtering problem in continuous notation. Section IV deals with
a more successful discrete formulation of this problem. Finally, section V

outlines the numerical computations now being undertaken.

. FURTHER PERFORMANCE PREDICTIONS FOR A PRE- AND
POST-COMPENSATED IMAGING SYSTEM

In two previous technical reports (RADC-TR-76-382 and RADC-TR-77-165)
the photon=-limited performance of a specific compensated maging system
was analyzed. The primary results of this analysis were two figures
showing restored bandwidth Al and quality factor Q as a function of the
tota! number N of photoevents intercepted by the system for a variety
of combinations of pre- and post-processing. Figure 8 of RADC-TR-76-382
showed that the restored bandwiuth of the pre- and post-compensated
cystem reached the diffraction-1imited bandwidth when approximately IO7
photoevents were intercepted by the system, this conclusion being valid
for a point-source object.

In the derivation of these curves, certain assumptions about the

systen were made. These included assumptions that the etmospneric



Fll"

coherence diameter r, was 10cm, that the system employed a shearing
interferometer with 317 subapertures, and that the ratio of image
integration time to wavefront sensor integration time was lok. In
addition it was assumed that the system employed a fixed splitting
ratio such that 90} of the incoming light was sent to the wavefront
sensor and 10% was sent to the image detector. The 90% splitting ratio
was found to be nearly optimum, although the maximum is very broad.
Concerns were expressed by members of the Review Group that the
number of photoevents required in the image (103 x 107 u IO6 photoevents)
might saturate the detector. Examination of the calculatlions showed

7

that the requirement for 10’ total photvevents was dominated by the flux

required for satisfactory operation of the wavefront sensor, and it was

i
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thati ine

]

aof amaller splitting ratios (less than 10% to the

[+%
o

spucuiates
‘mage) would reduce the dynamic range required of the detector wiihout
seriously degrading the quality of the final restored image.

The correctness of this speculation was investigated by setting
the performance of the wavefront sensor at certain fixed levels, and

calculating restored bandwidth and image quality as a function of th= total

number of photoevents in the detected image. This latter guantity is

represented by the symbol ii'

The results of these calculations are presented in Fig. 1. Part
(a) shows the restored bandwidth Ay (cycles/m rad) vs. ii , while part
{b) shows the quality factor Q vs. ii' In both cases, three curves are
presented, one for ¢ach of three levels of performance of the wavefront
se1sor. The parameter o represents the residual rms wavefront error
(measurement noise plus titting error) and takes on the values 0.5 radians,

1.5 radians and 4.5 radians. These numbers correspond to 0.08, 0.24 and

0.72 waves of rms error.
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Figure I: Restored bandwidth (a) and quality factor

(db) vs. average number of image photoevents

for fixed levels of performance of the wive-
front sensor.
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As can be seen from part (a) of the figure, when o = 0.5 radians,
the restored bandwidth is essentially indistinguishable from the diffraction
limited bandwidth, even for as few as 100 photoevents in the image.

For o = |.5 radians, aboul IO“ image photoevents are needed to achieve
the diffraction-limited restored bandwidth. Finally, when o = 4.5
radians, the performance of the waverront sensor is so poor that enormous
numbers of image photoevents (considerably more than IO;O) are needed to
achieve diffraction-limited performance.

Hopefully, this set of calculations will provide some indication
of the numbers of image photoevents that will be required to achieve
satisfactory quality in the final resitored images.

110, CONTINUOUS FORMULATION OF THE SPACE-VARIANT
RESTORATION PROBLEM

All previous analysis of the performance of pre- and post-compensated
imaging systems has assumed that the final post-detection restoration
filter is a linear space-invariant Wiener filter. This type of filtering
is known to be optimum only when the signal and noise are uncorrelated
stationary random processes and when the noise statistics are gaussian.
In the regime of photon-limited imaging, the noise is ron-gaussian and
signal-dependent, and it is therefore reasonable to assume that tome form
of linear, space-variant filtering or ronlinear filtering will perfora
better than the simple filtering used in earlier analyses.

The change from linear space-invariant filtering to more complex
filtering strategies has associated with it a cost in computaetional com-
plexity and processing time. It is natural therefore to inquire as to

how much image quality is gained by these more complex methods, and at

what price.




in this report we consider only lingar, space-variant, least-mean-
square filtering. Such filters depend on certain average properties of
the class of images anticipated, but do not depend on .the particular image
detected on any given trial. Techniques which perform a filtering oper-
ation that depends on the particular image detected are generally non-
linear, and will be considered in later work under this contract.

Figure 2 illustrates the nature of tne least-square-filtering
problem of interest to us here. For simplicity a one-dimensional space
variable x is used throughout. The object radiance distribution o(x)
is assumed to be a random process. In general the statistics o(x) may
be non-stationary; hence its autocorrelation function Ru(xl.xz) is
and x

a function of the two space coordinates x rather than just

) 2

their difference.

The object radiance distribution is subjected to a linear blur,
described by an impulse response or point-spread function that is in
general space-variant, aind is represented bdy b(xl,xz). The result is a

classical image irradiance i(x) incident on the detector, where

i(x) = ]b(x.e)o(a)ac (1)

Yhrough the detection process, a detected image d(x) is generated.
As implied by the semi-classical thecry &f photodetection, d(x) is a
doubly stochastic Poisson impulse process, with space-variant mean A{x)

related to the classical image intensity through

V) = i) (2)
hv

where n is the quantum efficiency, T the integration time, h s

Planch's constant, and + is the mean optical frequency. The detected

-s-
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Figure 2: Least souare filtering problem

in diagrarmatic form.
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image d(x) is passed through a linear, space-variant restoration filter
with impulse response h(x'.xz) , yielding a restored image r(x) given

by

o0

f(x) = J h(x,n)d(n)dn (3)

The impulse response h(x'.xz) is chosen to minimize the mean-square
difference between the restored image r(x) and an ideally filtered
object O(x). In general, the ideal filter may be space-variant with
impul se response s(xl.xz).

At this point it is natural to inquire as to what set of conditions

can lead to a least-mean-square filter which is space-variant rather than

space-invariant. To answer this question, we must first present some
theoretical results which can be derived without much difficulty, and
which are presented here without proof. The impulse response h(x,x””)
of the restoration filter which achieves least mean-square error is the

solution of the integral equation.

j h(x.x")ﬂd(x‘.x“)dx"

- J s(x.x“)kdc(x‘.x“)dx" (4)

Here s(x,x"°) is again the known impulse response of the ideal filter,

while Rd and Rdc are also known funstions, given by

Ry(x"x"") = Eid(x")d{x" "))

- 212
- 2: i(x")8(x"=x"") ¢ nz—z !i(x‘,x") (s)
hy h'v
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Rio(x ™) = Eld(x")o(x"*)]

- g
hy

(x"yx"%) (6)

lo

where T{(x°) 1Is the mean value of the image irradiance at x” ,
averaged over the ensemble of possible objects, R'(x‘.x“) is the auto-
correlation function of the image irradiance, and Rlo(x‘.x“) is the

cross-correlation function of the image irradiance and the object radiance.

More specifically,

T(x*) = J b(x*,x“*)o(x**)dx*- . (7)

-

R0 = e ) = [ ele,pbier)

. RO(E,n)dﬁdn ’ (8)

o) = Elillo(er )] = [ blx,o)R (e )de
- (9)
where o(x"") s the mean object radiance at x°- ; and Ro(;.n) is the
autocorrelation function of the object radiance distribution.
Examination of this somewhat bewiidering array of results leads

one to the conclusion that the least-mean-square-error filter will be

space-variant if any one of the following conditions hold:

(1) The mean value o(x) of the object radiance distribution Is not
constant (i.c., Is indeed a function of x) , the expectation
being over the entire ensemble of possible objects;

(2) The autocorrelation function Ro(ﬁ.n) of the object is non-
stationary (i.e., depends on both £ and n , rather than just

their difference).




(3) The impulse response b(xl,xz) of the blur is space variant (i.e.,
non isoplanatic);

(4) The impulse response S(XI’XZ) of the ideal filter is space
variant.

We now examine each of these conditions in the context of the
compensated imaging problem. Consider first the mean value o(x)
of the object radiance distribution over the object ensemble. All space-
objects are of course spatially bounded (i.e., of finite extent), and
for this reason we could argue that o(x) is always a function of x.
However, in any real measurement we look in on the object process with a
finite measurement window, and it is possible that cver this measurement
window the expected object radiance is constant. On the other hand, it is
not difficult to identify situations in which the mean object radiance
would be a function of position within the measurement window. An example
would be when the object of interest is far smaller than the measurement
window, but due to tracking errors its positicn within the window obeys
some non-uniform probability density function. |In such a case o(x)
is definitely a function of x , and therefore the least-mean-square
restoration filter must of necessity be space-variant.

Turning to condition (2), we would also expect the object auto-
correlation function RO(C.n) to be non-sta.ionary under the conditions
described atove. Alternatively, even if there are no tracking errors, and
the object has constant mean radiance in the field of interest, we might
expect the central portion of the object (i.e., the main body) to have
different textural appearance than the extremities (appendages consisting

of arms, booms, etc.), and hence a non-stationary autocorrelation function

-9-




might be required to properly describe the second-order statistics of
the object. Again a space-variant restoration filter would be required
for optimum performance.

| As for condition (3), space variance of the blur is anticipated
when the size of the object exceeds the size of the isoplanatic region
of the compensated imaging system. Under such conditions, space-variant
restoration is again required if the smallest possible mean-square error

is to be achieved.

Finally, condition (4), space-variance of the ideal filter, can
generally be ignored. In most cases of interest it is appropriate to use
as an ldeal filter the diffraction limited telescope itself. Such a filter

is space invariant, and as a consequence it is always safe in these

problems to assume that the impulse response s depends only on the
difference of its two variables.

At this point, we have introduced arguments that demonstrate that

in most practical applications of compensated imaging, the ideal post-
detection restoration filter will be space variant. It is quite another
matter to say precisely what the optimum filter is, and to calculate its
performance. The chief difficulties involved in this task are:
(1) Specification of reasonable models for of(x) , R (x,x") and
b(x,x*) ; and
(2) Solution of the inteqrz! equation (4) for these models.
Several attempts at finding a solution for various specific cases
have not met with success. Case$ examined included an object which is
8 ''windowed' stationary process (and therefore nonstationary), and an

object with a nonstationary autocorrelation function of the form

- 10 -




X|+X

Ro(x',xz) = I'(-——*-i——g-) 6(X| = XZ) (10)

Since even these idealistically chosen cases proved unsolvable, it was
decided that the continuous approach would have to be abandoned in favor
of a discrete approach. For a discrete formulation of the problem, the
necessity of solving an integral equation to find the required impulse
response h is replaced by the necessity of solving a matrix equation.
The latter is far easier to do, in general. We therefore turn to a
discussion of the discrete approach to the problem at hand.

IV.  DISCRETE FORMULATION OF THE SPACE-VARIANT
RESTORATION PROBLEM

In this section we treat the same problem addressed in section I,
but using a discrete representation of the various physical quantities
involved. We begin with a discussion of the discrete representation
itself and the physical meaning of the quantities involved.

(a) Discrete Notation

The continuous object radiance distvibution o(x) 1is repiaced by
a column vector o consisting of uniformly spaced samples of o(x) , it
being assumed that the object is approximately bandlimited and can there-
fore be subjected o sampling without appreciable loss of information. In
the case of a two dimensional object o(x,y) , the vector o |is con-
structed by lexicographic orderind‘of the samples. For an object
consisting of KxL elements, the vector o contains M = KL elements.
The blurring operation to which the object radiance is subjected
can be represented by an MxM matrix [B]. Such a matrix can represent
a space-invariant or a space-variant blur, depending on the form of its

elements. The elements of [B] are samples of the impulse responge

“see the Appendix for a detailed definition of this term.




b(xl.xz). The classical intensity of the image falling upon the photo-

detector is represented by a column vector i given by

i = [B]o (1)

The detector is assumed to consist of a discrete array of elements,
each of which produces a photocount for the observation interval T used.
Thus the detected signal is represented by a column vector d of length

th

M ; it is assumed that the n element dn of d is a Poisson random

variable, with mean given by

A = i (12)
n h':" n
where A is the area of a detector element, and in is the nth
element of i. Equivalently, we write
PR LI BLL 1Y) PO (13)
hv hv
th .
where the n element of X s An.

The detected signal d is subjected to linear filtering with the
aim of restoration. The restoration filter is represented by a matrix
(H], the elements of which are samples of the (possibly space-variant)

impulse response h(xl,x ). The filter [H] Is to be chosen to minimize

2

a certain measure of error between the restored image r given by
r = [H]d (14)

and an "ideally filtered’ object given by

3 = (slo (15)

Here [S] is an MxM matrix of samples of the impulse response

-

s(xl.xz) of the ideal filter. The use of a over a matrix, here and

- 12 -




elsewhere in what follows, implies that this matrix has been normalized

such that

max J [s) = (16)

m n
where [S]nm indicates the (n.m)th element of [S].
We define an error column vector ¢ given by
e = 8-r = [Slo- [Hid (17)

The restoration filter [H] will be chosen to minimize the mean-squared
norm of the vector ¢. Equivalently we choose ([H] to minimize the

quantity

6= E{.g:_tgt - E{Tr( _E_E_t)

(18)

where t signifies a transpose operation, E is an expectation operator,
and Tr( ) signifies the trace of a matrix (i.e., the sum of the elements
aleng the main diagonal).

(b) Minimizing Mean-Squared-Error

Substituting Eq.(17) in Eq.(18), the mean-squared error to be

minimized becomes
6= elree b
- EtTr((lglg - [Hl8) ([s)o - [“1‘_’)‘)}
. E‘Tr([ﬂ]g_ a' M)t - 2050 at(H1* + [S)o 9_‘[31‘)% (19)

The expectation can be performed in two steps. First we assume O is

fixed and take the expectation over only the Poisson statistics
E{:) = E(°| o} (20)
p —

Later we take a second expectation over the statistics of o. Thus

- 13 -




. t t
e, |Tre e Tr([H]Ep}_gg i[n]

- Z[QIQ_EP‘QF![H]t + [glg_gflglt) (21)

Because d s Poisson distributed, with statistically independent

components (assuming o is fixed), it follows that

0
e la g - Ny Ceant (22)
0\
where the notation is defined by
. ° 1] 0
a - a, (23)
0 AN 0 "-am

It is convenient at this point to normalize the matrices and vectors
for future expressions. Again, a matrix [A] is normalized to produce
M

[A] by factoring out a constant C = max Z [A]"m from all the columns.

n=} M

A vector a is normalized to produce & by factoring out | a  from
M n=1

all elements. As a consequence, [ a = 1. This normallzation assumes

n=]|
that the amount of light intercepted by and the net energy loss of the

optical system does not change as a point source moves about the object
field.
Now, assuming that the energy loss is approximately constant over

the field of view, (13) can be written

A o= sle (24)
where we have used

T




T ” .

K & hv (25)
b _nTA
)
b, & ) [B]nm (assumed identical for all m).
n
Using (24) in (22), we obtain
(4 4t l -0 L gar, teagt
Ep,d.si_l - % (6lo |+ -7 (8loo'(B] (26)
0 \\\
In addition
fatl o otrart
eplgl o'[8] (27)

Finally, substitution of (26) and (27) in (21) yields the conditional

expectation

. o A X
EpgTr(E Et)} = Te(){ L I- (8lo + 1 (8lo 3:\_t(B]t Ok
k |_° ~ 2

-ghggdﬁmﬂ+{hggﬁﬁ 28)

The remaining task in calcuiating the desired error measure is

to average over the object ensemble. Applying such an average to Eq.(28)

S NPT I SO B
6 = Tr{[H]{N (8le + N {8][2 18] )[n]
0 ‘\\\J

S A REIE 1M -2 izlil[iollél{) (29)

yields

-15 -




where the expected number of photoevents, N , in the image is

— | o —

] Eo k E cn} (30)
In addition, the definitions

= A -

e ® el 1o,

L Eggt (31)

W) = =5

have been used. This is nct a totally unusual normalization for !iol

since . . .
E, {[r}; ([B]g)n] } - 2 (}T + oi) (32)
where
o: = variance of (z An) (33)
n

Thus, if the variance of the number of photoevents per image is small,
is reasonably constant over the field of view,

and the covariance of )
(34)

B, : (&)

o

then

[H] that minimizes

The final problem is to find the filter matrix
Fortunately, the answer to this

the error measure & of Eq.(29).
problem is available in the literature and can be directly employed here

6 is given by

(Ref.l1). The filter matrix that minimizes
) ) .- 0 ) 2\
W) = kWN(S)(R D(8){ |- (8o + N(B) (R ](8]" (35)
c ()
0 \

It should be emphasized that this filter will in general be space variant,

depending on the properties of [S] , [B], o , and [iol.

- 16 -




P

(c) Minimum Mean-Squared Error

In order to specify the performance of the optimum filter, it is
helpful to have an expression for the minimum mean-squared error ‘mln
actually achieved. If we substitute expression (35) for the optimum

fil.er in expression (25) for the mean-squared error, we obtain

2 (. . ) .~ 0
6. - 2@ e - o] e
0
RTINS oL FE RN
O RON RO RGN I (36)

where [I] is the identity matrix. Sometimes it is useful to have

the minimum mean-squared-error in the alternative form

I St
- N (81810 - WBIEIE1Y) o)

&nin
For purposes of comparison with the continuous case, it is

interesting to manipulate (36) further, yielding the form

[~ A ]
2‘_2 N \\\ e 0 s e - ¢ -1
6, = KN TriSIR ) (Bic | « (8] (%} (6]
0 N
5
(8)5 (st (38)
0 AN

Note the similarity of this resuit to expression for min'mum mean-

squared error in the continuous case (derived in our earlier reports),

- - 2‘

2 _2 JJ ISI 00 d&)xdﬂv

= k°N e (39)
|+ N|8|%¢

‘min
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(see, for example, Eq.(7) of RADC-TR-77-165). An important difference
is, of course, that Eq.(38) holds in the space-variant case, while
Eq.(39) is valid only for a space-invariant filter.
(d) Image Quality Measures

Two different image quality measures were found useful in the
continuous case. One, which we called the ''image quality factor", @,

was defined as the ratio of the ''signal'' energy at the output of th:

1 restoration filter to the mean-squared error (''noise'') at the output.

A second, which we called the ''restored bandwidth', I , was equivalent

bandwidth of the cascade of the blur and deblurring filters.
Concentrating first on the quality factor Q , we note that in the

discrete case, the expected energy in the detected signal is given by

the inner product

crefw| ez | WimEm (4)

The "'signal’ portion of this energy Is given by the sezond term,
oF e : :
v Te(teg )18)Y) )
o
After passage through the restoration filter [H] , the signal energy at

the output is given by
R RHOIGERONON 2)

Substitution of the optimum [H] yields




Fl\\ 0 -1

2.2 e 1rat = = e et
4 4= N Tr{ls] [301[8] (8]o + N[8] %) (8]
S & A= N2 0 Y LT
JOTERION (Ble | + WB][K ){8)") [B)(R ](s]
0 N
i (43)
The image quality factor Q is then defined as
¢ & - (44)

min

As for the second measure of image quality, restored bandwidth,
the situation is a bit more difficult, since for a space-variant system
there is no unique bandwidth that can be specified. Stated another way,
there is in general a different bandwidth associated with every point
in the filtered image.

In the ccntinuous analysis of a space-invariant sysiem, the restored

bandwidth A was defined by

[4 ea
2 (a2 - JJ 84| du dn, (45)

tf the product of é and ﬁ (the normalized transfear functions of the

blur and deblur filters, respectively) is non-negative axd real, as is

generally the case in practice, thea Eq.(45) can be rewritten

Aa? . “M'C.'n)b(ﬁ.n)d{dn (46

where 5 and h are the inverse fourier transforms of B and MW ,
respectively. This expression is the integral of the product of the

two impulse responses, centered at the origin in this case. The same
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restored bandwidth wouid be obtained by integrating the product of the
impulse responses centered at any point in output plane, a consequence
of the fact that bcth the blur and the restoration filter are space
invariant.

In the space-variant case, the product of B and A will yield
functions with different areas, depending on where this product is

centered in the output plane (x,y). The integral becomes

"(Aﬁxx.v))z - JI g(x.Y:E.n)g(E.n;x.y)dCdn ®7)

and Is clearly a function of which output coordinstes (x,y) are chosen.
The discrete analogy to Eq.(47) would be to define the restored

bandwidth at the nth output point by

(&) - ((W(eD),, 4g)

kh diagonal

where for matrix [A] , the symbol ([A])nn is the n
element of [A)]. Since this quantity depends on the point n , it is
not of itself a useful measure of image quality. However, all three of

the following definitions would be useful:

(e, ) - L Te(MICeD) (A3a)
'(AﬁkAx)z = Maximum diagonal element of [ﬁ][i] TLTY)
a(aﬁk'u)z = Minimum diagonal element of [ﬁ][i]. (v9c)

These definitions may be regarded as yielding average, maximum and
minimum restored bandwidths, respectively.

(e) The Staticnary, Shift-Invariant Case

We now consider the form taken by the various results above in the

special case of a shift-invariant matrix [H]. In this case, o is a
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constant vector with elements %‘, while the matrix Iiol takes on
toeplitz form. In addition, the ideal filter matrix [S] and the blur

. .~ 0
matrix [B] take toeplitZ form, and the matrix (8Jo will be of

0
the form -:;‘- [1]. N
If the covariance function of the object and the point-spread
functions of the ideal and blur filters are sufficiently narrow, the

toeplitz matrices above can be replaced by circulant*approximations.

With this substitution the post-compensation filter matrix becomes

) = K AGIG 165 - FeIE, 16.1F) o
1 s )13, 118, (§t1) + Fie,) ocllacl) (50)

where the subscript ¢ indicates a circulant approximation.

The quality factor Q becomes in this case

L, U (CRICRICAPILRRERY

— D)
SUCEENT R N )3, 106.1°) IS I)

The equivalent bandwidth becomes

LR R ICRICH) (s2)

For any circulant matriz [C], the identity

] = 1510 Mo (53)
holds, where [¥] is the two-dimensional discrete Fourier transform
(OFT) matrix, and [Acl is a diagonal matrix with elements that are the
eigenvalues of [C]. Using this fact, the [K]) matrix and the quality

measures can be rewritten in the forms

i) = KRS Eaghng Diagl" (110 o Wingl L2y 1030°) 0™
(54)

]
See the Appendix for a detailed definition of this term.
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1e (191 00, g1 g g1 (111 ¢ Wlng) U, gl 17
0 ()

Q = T (55)
2 _— % N3 -]
k (Tr([!][!\s][hao]([l] + N[nBl[A%][AB] ) (Ag] (9] )
2 | ‘ -1
nlay )2 = g Te((91 ) g 1917 (56)
Note that the eigenvalues of a circulant matrix are the values of the
OFT of the first column of the clirculant matrix.
Because of the diagonal forms of (54), (55) and (56), it is
convenient to represent the nth component of the DFT of the restored

image by R(n) , and the nth component of the DFT of the detected

image by D(n). Then we have
k W S(n)8" (n)a (n)

R(n) & ———— 0(n) (57)
I + N|B(n)| ég(n)

and
2y 1B(n) | *1$(n) %63 ()
‘ R 2
" 1+ W|B(n)|% (n)
Q - (. i‘ KAL) (58)
) [s(n) | (n)
n 1+ N|§(n)|2$o(n)
where 60 is the Dr7 of io . Further,
alaig)? = & T AIB(0) (59)
n

These last three equations are axact analogs of the results presented
in earlier reports for the continuous case, the only difference being
the replacement of [ntegrals by discrete zums. Thus the results of the
more genera! space-variant analysis do Indeed reduce to the results

obtained in earlier analyses of the space-invariant case.
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V. NUMERICAL CUMPUTATIONS IN PROGRESS

At this time computations are being performed on four simple initial
cases. These iritial cases all involve one dimensional objects only,
and each has at most one shift-variant or non-stationary factor. One
case is totally stationary and shift-invariant.

For each of these cases the image quality factor Q of (44) and the
three forms of the restored bandwidth (49) are being computed. |In the
three non-stationary or shift-variant cases the image quality measures
are being computed using a series of shift-invariant restoration filters
[H]. In the totally stationary, shift-invariant case only the optimum
shift-invariant [H] are being used. For the three non-stationary or
shift-variant cases the image quality measures are also being computed
using the optimum shift-variant filter of (35). The shift-variant and
shift-invariant filter performances will then be compared.

Of our initial cases, case | is totally stationary and shift-

-~

invariant. For this case E: is assumed to be

S =zl (60)
where 1 is a vector of all ones. In general the following relation
holds

__t
(2,] = l¢ ) +00 (61)
where
t
{¢] = E{lo-0)lo -0} (62)

In the stationary case the covariance matrix [001 is assumed to be
lo,] = o20) (63)

For this shift-invariant case the blur is assumed to produce a Gaussian

point-spread function. In each of the following three cases, only
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f one of the above assumptions about é:. [¢o] , and [b] will be changed.
Thus it should be possible to determine what factors are most improved
by the shift-variant filter [h].

In case Il the blur [b] 1is no longer assumed to be shift-invariant,
but instead is assumed to have a position dependent width which
increases near the edges of the image. All othar factors are assumed
the same as case |.

In case III the object ensemble is assumed to have a Gaussian mean
intensity profile centered in the field of view. All other factors
are again assumed the same as case |.

In the last case, case |V, the auto-covariance function [¢°] is

assumed to be of the form

2
i -4
2 2
(1)) = o7y exp-( = >} (64)
where
| i = j
8 -
H 0 i#]
w = a width parameter (65)
2

g = center variance

Thus it is assumed that the object ensemble has a non-stationary

variance which decreases toward the edges of the object. As in the above

two cases, the other factors are assumed the same as case |.

Results of these calculations will be presented in our next technical

report.
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APPENDIX

In this appendix we define several specialized terms used in the
body of the report.

Lexicographic »ordering

It'is common practice in the image processing community to represent
two-dimensional arrays of samples by vectors. |If, for example, an image
is sampled on a two-dimensional sampling grid, it is perhaps most

naturally represented by a matrix of sample values:

i U
m - | 2 & (A.1)

B L 7 R "
For mathematical purposes, it is often convenient to reduce this matrix
to a vector i. This Is accomplished by scanning the matrix row by row

to create a one-dimensional array of samples:

"
.

i o= ) (A.2)

The vector | s sald to have been constructed by lexicographic

ordering of the matrix [I].
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Toeplitz Matrix

A matrix [A] is said to be a Yoeplitz matrix if it has the property
that, whenever j - k = m - n , tha elements [A]jk and [A]mn are

equal. An example of a Toeplitz matrix is given below:

) = |9 2 4 7 (A.3)

8 6 9 2

-

The covariance matrix of a wide-sense stationary random process is
always a Toeplitz matrix.

Circulant Matrix

A matrix [C] is called circulant if each of its rows is a right
cyclic shift of the previous row by one element. The first row must be
a right cyclic shift of the last row by one element. An example of a

circulant matrix is given by

2 4 7 5]
5 2 4 7
ICJ - (A.‘.)
7 5 2 4
4 7 5 2]

Note that by ''cyclic shift" we mean the shifting of rows must be of the
“wrap-around’' type. That is, when an element is shifted out on the right,
it immediately reappears on the left. Note, also that all circulant
matrices are Toeplitz in form.

It is common practice in image processing to approximate some forms
of Toeplitz matrices by constructing circulant matrices from them. |If

a Toeplitz matrix has only a few localized non-zero diagonals, a circulant
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’ approximation is often constructed by replacing some of the zero diagonals
with non-zero diagonals thus forming the result into the circulant form.

As an example, the Toeplitz matrix

—

7 5 1 0 0 0
3 7 8§ 1 0 0 o0
2 3 7 5 1 0 o
T} = 0o 2 3 7 5 1 o0 (A.5)
o o 2 3 7 5 1
b 0o 0 o 2 3 7 5
’ 06 0 0 0o 2 3 Z_
can be converted to the circulant matrix
7 5 1 o 2 3]
3 7 5 1 0 o0 2
2 3 7 5 1 0 o
(7] = o 2 3 7 §5 1 o (A.6)
o 0o 2 3 7 §5 1
| Il o 0 2 3 7 5
s 1 0 0 2 3 7

by changing the three upper right and lower left zero elements.
Computations using circulant matrices can be performed faster than those
for Toeplitz matrices because the discrete Fourler transform can be
utilized. As the fraction of diagonals of the Toeplitz matrix which are
non-zero decreases, the circulant approximation approaches the original
matrix, and the errors assoclated with the use of the circulant approxi-

mation can he shown to decrease.
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